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Abstract

We explore the connection between outlier-robust high-dimensional statistics and
non-convex optimization in the presence of sparsity constraints, with a focus on
the fundamental tasks of robust sparse mean estimation and robust sparse PCA. We
develop novel and simple optimization formulations for these problems such that
anyapproximate stationary point of the associated optimization problem yields a
near-optimal solution for the underlying robust estimation task. As a corollary, we
obtain that any rst-order method that ef ciently converges to stationarity yields an

ef cient algorithm for these tasksThe obtained algorithms are simple, practical,
and succeed under broader distributional assumptions compared to prior work.

1 Introduction

In several modern machine learning (ML) applications, such as ML seclityT1Q BNL12,
SKL17, DKK* 194 and exploratory analysis of real datasets, e.g., in population genBfi4/[ 02,
PLJD1Q LAT* 08, DKK™* 17], typical datasets contain a non-trivial fraction of arbitrary (or even
adversarial) outliers. Robust statistie$HRS86 HROY is the sub eld of statistics aiming to design
estimators that are tolerant tcanstant fractiorof outliers, independent of the dimensionality of the
data. Early work in this eld, see, e.gTQk60, Hub64 Tuk75 developed sample-ef cient robust
estimators for various basic tasks, alas with runtime exponential in the dimension.

During the past ve years, a line of work in computer science, starting vidti* 16, LRV16],

has developed the rstomputationally ef cientobust high-dimensional estimators for a range of
tasks. This progress has led to a revival of robust statistics from an algorithmic perspective (see,
e.g., DK19, DKK™* 21] for surveys on the topic). In this work, we focus on high-dimensional
estimation tasks in the presence of sparsity constraints. To rigorously study these problems, we need
to formally de ne the model of data corruption. Throughout this work, we work with the following
standard contamination model.

1An implementation of our algorithms is available at https://github.com/guptashvm/Sparse-GD.
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De nition 1.1 (Strong Contamination Model, seBKK* 16]). Given a parameted < < 1=2and

a distribution familyD onRY, theadversanpperates as follows: The algorithm speci es a number
of samples, andn samples are drawn from some unknor2 D . The adversary is allowed to
inspect the samples, remove uproof them and replace them with arbitrary points. This modi ed
set ofn points is then given as input to the algorithm. We say that a set of samplesisuptedf it

is generated by the above process.

High-dimensional robust statistics is algorithmically challenging because the natural optimization
formulations of such tasks are typically non-convex. The recent line of work on algorithmic robust
statistics has led to a range of sophisticated algorithms. In some cases, such algorithms require solving
large convex relaxations, rendering them computationally prohibitive for large-scale problems. In
other cases, they involve a number of hyper-parameters that may require careful tuning. Motivated by
these shortcomings of known algorithms, recent wa@kR{S20 2JS2(Q established an intriguing
connection between high-dimensional robust estimation and non-convex optimization. The high-level
idea is quite simple: Even though typical robust statistics tasks lead to non-convex formulations, it may
still be possible to leverage the underlying structure to show that standard rst-order methods provably
and ef ciently reach near-optimal solutions. Indee@PGS20 ZJS2Q were able to prove such
statements for robust mean estimation under natural distributional assumptions. Speci cally, these
works established that any (approximate) stationary point of a well-studied non-convex formulation
for robust mean estimation yields a near-optimal solution for the underlying robust estimation task.

In this work, we continue this line of work with a focus gparseestimation tasks. Leveraging
sparsity in high-dimensional datasets is a fundamental problem of signi cant practical importance.
Various formalizations of this problem have been investigated in statistics and machine learning
for at least the past two decades (see, eHiTW15] for a textbook on the topic). We focus on

robust sparse mean estimatiandrobust sparse PCASparse mean estimation is arguably one

of the most fundamental sparse estimation tasks and is closely related to the Gaussian sequence
model [Tsy08 Joh17. The task of sparse PCA in the spiked covariance model, initiatetbim(],

has been extensively investigated (see Chapter 8 of [HTW15] and references therein).

In the context of robust sparse mean estimation, we are givercarrupted set of samples from

a distribution with unknown mean 2 RY where is k-sparse, and we want to compute a vector

b close to . In the context of robust sparse PCA (in the spiked covariance model), we are given
an -corrupted set of samples from a distribution with covariance matfixvv T, wherev 2 R¢

is k-sparse and the goal is to approximatelt is worth noting that for both problems, we have
access to much fewer samples compared to the non-sparse case (@(ghlyg d) instead of ( d)).
Consequently, the design and analysis of optimization formulations for robust sparse estimation
requires new ideas and technigues that signi cantly deviate from the standard (non-sparse) case.

1.1 Our Results and Contributions

We show that standard rst-order methods lead to robust and ef cient algorithms for sparse mean
estimation and sparse PCA. Our main contribution is to propose novel (non-convex) formulations for
these robust estimation tasks, and to showdlpatroximate stationarity suf ces for near-optimality

We establish landscape results showing #mtapproximate stationary point of our objective function
yields a near-optimal solution for the underlying robust estimation task. Consequently, gradient
descent (or any other methods converging to stationarity) can solve these problems.

Our results provide new insights and techniques in designing and analyzing (non-convex) optimization
formulations of robust estimation tasks. Our formulations and structural results immediately lead
to simple and practical algorithms for robust sparse estimation. Importantly, the gradient of our
objectives can be computed ef ciently via a small number of basic matrix operations. In addition
to their simplicity and practicality, our methods provably succeed under more general distributional
assumptions compared to prior work.

For robust sparse mean estimation and robust sparse PCA, our landscape results require deterministic
conditions on the original set of good samples. We refer to these conditiatetality conditions

(De nitions 2.1 and 2.2, formally de ned in Section 2). At a high level, they state that the rst and
second moments of a set of samples are stable whgnfraction of the samples are removed. These
stability conditions hold with high probability for a set of clean samples drawn from natural families

of distributions (e.g., subgaussian).



For robust sparse mean estimation, we establish the following result.

Theorem 1.2(Robust Sparse Mean Estimatioet0 < <  for some universal constang and

let > .LetG” be asetoh samplesthati¢k; ; )-stable (per De nition 2.1) w.r.t. a distribution
with unknowrk-sparse mean 2 RY. LetS = ( X;)I, be an -corrupted version oG”. 2 There is
an algorithm that on input$§, k, , and , runs in polynomial time and returnslasparse vector
b2 RYsuchthakb k, O().

We emphasize that a key novelty of Theorem 1.2 is that the underlying algorithmsisaader
methodapplied to anovel non-convex formulatioof the problem. The major advantage of our
algorithm over prior work BDLS17, DKK™* 194 is its simplicity, practicality, and the fact that it
seamlessly applies to a wider class of distributions on the clean data.

As we will discuss in Section 3, when the ground-truth distribufiors subgaussian with unknown
k-sparse mean 2 RY and identity covariance, a setof= € k?logd= ?) samples drawn from

D is(k; ; )-stable (De nition 2.1) with high probability for = O( ~ log(1=)). It follows as an
immediate corollary of Th&orem 1.2 that, given aoorrupted set of samples, we can compute a
vectorb thatisO( ) = O(  log(1=)) close to the true mean This sample complexity matches
the known computational-statistical lower bounB¥&E17, BB20]. More generally, one can relax
the concentration assumption on the clean data and obtain qualitatively similar error guarantees.

Next we state our main result for robust sparse PCA.

Theorem 1.3(Robust Sparse PCA) et0 < land0O< < o for some universal constang.
LetG? be a set oh samples that i¢k; ; )-stable (as in De nition 2.2) w.r.t. a centered distribution
with covariance = | + vv >, for an unknowrk-sparse unit vectov 2 RY. LetS = ( X;).; be
an -corrupted version o6°. There is an algorithm that on inpug 5 and , runs in polynomial
time and returns a unit vectar 2 RY such that uu>  vv> = O( =).

Interestingly, our algorithm for robust sparse PCA is a rst-order method applied to a shomplex
formulation of the problem. We view the existence of a convex formulation as an intriguing fact that,
surprisingly, was not observed in prior work.

As we will discuss in Section 4, when the ground-truth distribufiois centered subgaussian with
covariance = | + vv ~, for an unknowrk-sparse unit vector 2 RY, a set oin = € k?logd= ?)
samples drawn fror® is (k; ; )-stable (De nition 2&) with high probability for = O( log(1=)).
Therefore, our algorithm outputs a vector thabié  log(1= )= ) close to the true direction.

The sample complexity in this case nearly matches the computational-statistical lower bound of
( k?logd=2) [BR13 which holds even without corruptions. While the error guarantee of our
aIgBrithm is slightly worse compared to prior wolRIPLS17, DKK™* 19 for Gaussian data (we get

O( = )rathertharO( = )), we note that our algorithm works for a broader family of distributions.

Prior Work on Robust Sparse Estimation. We provide a detailed summary of prior work for
comparison. BDLS17] obtained the rst sample-ef cient and polynomial-time algorithms for robust
sparse mean estimation and robust sparse PCA. These algorithms succeed for Gaussian inliers and
inherently use the ellipsoid method. The separation oracle required for the ellipsoid algorithm
turns out to be another convex program — corresponding to an SDP to solve sparse PCA. As a
consequence, the running time of these algorithms, while polynomially bounded, is impractically
high. [LLC19] proposed an algorithm for robust sparse mean estimation via iterative trimmed hard
thresholding, which can only toleratesab-constanfraction of corruptions. PKK™* 194 gave

iterative spectral robust algorithms for sparse mean estimation and sparse PCA. These algorithms are
still quite complex and are only shown to succeed under Gaussian inliers.

1.2 Overview of Our Approach

In this section, we give an overview of our approach for robust sparse mean estimation. At a very high
level, we assign a nonnegative weight to each data point and try to nd a good(det ojn samples.

The constraint on the weight vector is that it represents at least a (fractional)(4et of)-portion of

the input dataset. Formally, givendatapointgX;)i., , the goal is to nd a weight vector 2 R"

2For two sets of sample8 andT, we sayS is an -corrupted version of if jSj = jTjandjS nTj iSj.



P
suchthat w = ; w;X; is close to the true mean The constraint om is that it belongs to
n o]
nn = W2R":kwk, =1 and0 w; ﬁSi :
which is the convex hull of all uniform distributions over subsets [n] of sizejSj = (1  )n.

P

Let w = ;wi(X; w) (X w)> denote the weighted empirical covariance matrix. It is
well-known thatifone can ndv 2 . that minimizes the weighted empirical variance v for
all k-sparse unit vectong, then , must be close to. Unfortunately, itis NP-Hard to nd the sparse
directionv with the largest variance. To get around this issB®LS17] considered the following
convex relaxation, minimizing the variance for convex combinations of sparse directions:

min max A : 1

w o tr(A)=1 ;P i A KA 0( W) ( )

Givenw, the optimalA can be found using semide nite programming (SDR2)J$2Q observed that
any stationary pointv of (1) gives a good solution for robust sparse mean estimation. However,
solving (1) requires convex programming to compute the gradient in each iteration. As explained in

the proceeding discussion, our approach circumvents this shortcoming, leading to a formulation for
which each gradient can be computesing only basic matrix operations

In this work, we propose and analyze the following optimization formulation:

min f(w)=k w Ik, subjecttow?2  ;
w ik;

wherekAke,... is the Frobenius norm of thie? entries ofA with largest magnitude, with the
additional constraint that the&@ entries are chosen frokirows withk entries in each row.

We prove that any stationary point bfw) yields a good solution for robust sparse mean estimation.
Here we provide a brief overview of our proof (see Section 3 for more details). Given a weight vector
w, we show that ifw is not a good solution, then moving towasd (the weight vector corresponding

to the uniform distribution on the clean input samples) will decrease the objective value. Formally,
we will show that, foranp < < 1,

@ Hw+w? =(1 ) wt w?+ (1 ) w w?)( w w?)”

We can then takk kg..x norm on both sides (after subtractinpand show that the third term can
be essentially ignored. If the third term were not there, we would have

f((l )W+ W?) = (1 )W+ w? I F;k;k
@ K w Tk * K owe Tkeyg =@ )fW)+ f (W)

Therefore, ifw is a bad solution witli (w) much larger tham (w?), thenw cannot be a stationary
point becausé decreases when we move framto (1 )w+ w”.

Remark 1.4. The technical overview for robust sparse PCA follows a similar high-level approach,
but is somewhat more technical. It is deferred to Section 4.

Roadmap. In Section 2, we introduce basic notations and the deterministic stability conditions
that we require on the good samples. We present our algorithms and analysis for robust sparse mean
estimation in Section 3 and robust sparse PCA in Section 4. In Section 5, we evaluate our algorithm
on synthetic datasets and show that it achieves good statistical accuracy under various noise models.

2 Preliminaries and Background

Notation. For a positive integem, let[n] = f1;:::;ng. For a vector, we usekvk,, kvk,, kvk,,
andkvk, for the number of non-zeros, the, ", and’; norm ofv respectively. Let be the
identity matrix. For a matrid, we usekAk,, KAk , tr( A) for the spectral norm, Frobenius norm,
and trace ofA respectively. For two vectors y, letx” y denote their inner product. For two matrices
A;B,weuseA B =tr( A~ B) for their entrywise inner product. A matri is said to be positive
semide nite (PSD) ifx> Ax  Ofor all x. We writeA B iff (B A) is PSD.



For avectow 2 R", letdiag(w) 2 R" " denote a diagonal matrix witlr on the diagonal. For a
matrixA 2 R" ", letdiag(A) 2 R" denote a column vector with the diagonalfof For a vector
v2 RYandases [d], we writevs 2 RY for a vector that is equal te on S and zero everywhere
else. Similarly, foramatrid 2 RY 9andases ([d] [d]), we writeAs for a matrix that is
equal toA on S and zero everywhere else.

For a vectov, we de nekvk,, =max;s;=k kvsk, to be the maximum,-norm of anyk entries of
v. For a matrixA, we de nekAk., . to be the maximum Frobenius norm of akf/entries ofA.
Moreover, we de ne&kAk., . to be the maximum Frobenius norm of ayentries with the extra
requirement that these entries must be chosen koows withk entries in each row. Formally,

P
KAk, 2 = max kAgqk. and kAkFkk = max kAikz.k whereA; isi-th row of A: (2)
jQj=k2 iSi=kiz2s '

Sample Reweighting Framework. We usen for the number of samples, for the dimension,

and for the fraction of corrupted samples. For sparse estimation, wk f@ehe sparsity of the
ground-truth parameters. We uG@ for the original set oh good samples. We us&= G[ B

for the input samples after the adversary replacémction of G?, whereG ~ G” is the set of
remaining good samples aidis the set of bad samples (outliers) added by the adversary. Note that
jGj=(1 )nandjBj= n.

Givenn samplesX1;:::; X, we writeX 2 RY " as the pample matrix where theh column
is Xi. For a weight vectow 2 R", we gse ,, = Xw =, w;X; for the weighted empirical
mean and , = X diag(w)X wow = WX w)(Xi w)” for the weighted empirical

covariance. Let ,. be the convex hull of all uniform distributions over subsgts [n] of size
iSi=(@1 )n: o = fw2 R kwk; =1and0 w; ﬁ 8ig, In other words, every
w2 . corresponds to a fractional set@ )n samples. We use’ to denote the uniform
distribution onG (the remaining good samples$).

Deterministic Stability Conditions. For robust sparse mean estimation and robust sparse PCA, we
require the following conditions respectively.

De nition 2.1 (Stability Conditions for Sparse Meanh set ofn samplesG? = ( X;)I; is said to
be(k; ; )-stable (w.r.t. a distribution with mean) iff for any weight vectow 2 ., , we have
Kw Ky andk w kg 2= where ,, and , are the weighted empirical mean
and covariance matrix respectively, and tg., ., norm is de ned in Equation2).
De nition 2.2 (Stability Conditions for Sparse PCAR set ofn samplesG? = (X)L, is(k; ; )-
stable (w.r.t. a centered distribution with cova,garice vv 7 ) iff for any weight vectow 2 a2,
Mw (I + vw?) ; whereM,, = ; w;X;X;{ and thek kF o2 horm is de ned in
Equation(2).

F;2k2

First-Order Stationary Points. We give a formal de nition of the notion of (approximate) rst-
order stationary point that we use in this paper.

De nition 2.3 (Approximate Stationary Points}ix a convex seK and a differentiable functiof.
For 0, we say thak 2 K isa -stationary point of iff the following condition holds: For any
unit vectoru wherex + u 2 K for some > 0, we havas’ r f (x)

We note that the objective functions studied in this paper are not everywhere differentiable. This
is because, taking thek., ., norm as an example, there can be ties in choosing the lakgest
entries. When the functioh is not differentiable, we usef informally to denote an element of

the sub-differential. We will show in Appendix C that, whflas not differentiable, it does have a
nonempty subdifferential, as it can be written as the pointwise maximum of differentiable functions.

3 Robust Sparse Mean Estimation

In this section, we present our non-convex approach for robust sparse mean estimation. We will
optimize the following objective, whetek, ., is de ned in Equation (2):

mmin f(w)=Kk w Ikgyg, subjecttow2 , (€)



We will show that the objective functiof8) has no bad stationary points (Theorem 3.1). In other
words,every rst-order stationary point of yields a good solution for robust sparse mean estimation.

Our algorithm is stated in Algorithm 1. As a consequence of our landscape result (Theorem 3.1), we
know that Algorithm 1 worksio matter howwe nd a stationary point of (because any stationary
point works), so we intentionally did not specify how to nd such a point. As a simple illustration,
we show that (projected) gradient descent can be used to minfmikke convergence analysis and
iteration complexity are provided in Appendix C.

Algorithm 1: Robust sparse mean estimation.

Input: k> 0,0< < g, and an -corrupted set of sampléX )i, drawn from a distribution
with k-sparse mean. 2
Output: a vectorb that is close to .
1: Find a rst-order stationary poink 2 . of the objectiveminy, f (W) = k w  T'kgyy -
2: Returnb = ( w)o whereQ is a set ok entries of , with largest magnitude.

Formally, we rst prove that Algorithm 1 can output a vecto® RY that is close to in k K, norm,
as long as the good samples satis es the stability condition in De nition 2.1.

Theorem 3.1.Fixk > 0,0< < o,and > .LetG? be a set oh samples that igk; ; )-stable
(as in De nition 2.1) w.r.t. a distribution with unknowksparse mean 2 RY. LetS = ( X;).; be
an -corrupted version oG”. Letf (W) = k w Ikgy, . Let = O(n'=? 2 3%2) Then, for any
w2 . thatisa -stationary point of (w), we havek Ko = O( ).

Once we have a vector, thatisO( )-close to in k k,, norm, we can guarantee that a truncated
version of , (the outputb of Algorithm 1) isO( )-close to inthe ,-norm:

Lemma 3.2. Fix two vectorsc;y withkxk, —kandkx  yk,., . Letz be a vector that keeps
thek entries ofy with largest absolute values and sets the resh.téVe havekx  zk, 5.

Theorem 1.2 follows immediately from Theorem 3.1 and Lemma 3.2.

We can apply Theorem 1.2 to get an end-to-end result for subgaussian distributions. We show that the
required stability conditions are satis ed with a small number of samples.

Lemma3.3. Fixk > 0and0O< < 4. LetG? be a set oh samples that are drawn i.i.d. from a
subgaussian distribution with meanand covariance . If n = ( k? logd= 2), then with probability
atleastl exp( ( k?logd)),G”is(k; ; )-stable (asin De nition 2.1) for = O( log(1=)).

Combining Theorem 1.2 and Lemma 3.3, we know that giveneorrupted set 00 (k? logd= ?)
san?)oles drawn from a subgaussian distribution wiparse mean, the output of Algorithm 1 is
O(  log(1=))-close to in ,-norm.

In the rest of this section, we will prove Theorem 3.1. Omitted proofs in this section are in Appendix A.

We start with some intuition on why we choose our objective funaf®)nWe would like to design

f(w)=9( w ) tosatisfy the following properties:

1.g( w |)isanupperboundow (  I)vforall k-sparse unit vectons 2 RY. This way, a
small objective value implies théat Ky is small.

2. 9( w2 |)issmall forw? (the uniform distribution oiG). This guarantees that a goadexists.

3. Triangle inequality org. This allows us to upper bound the objective value when we move
towardw? by the sum ofy( ) of each term on the right-hand side:

a wrw? =(1 Wow D+ (w D+ QT )w w?)( w w?)”

4. g(uu”) is close tog(vv” ) wherev keeps only thék largest entries ofi. We want to approximate
in k k,,, norm, so intuitivelyg( v 1) should depend only on the largéséntries of( ).

3without loss of generality we can assume thia given to the algorithm. This is because we can run a
binary search to determineif our guess of is too small, then the algorithm will outputvawhose objective
valuef (w) is much larger than it should be.



Our choiceof W) =g( w )=k I Ke is motivated by (and satis es) all these properties.
Lemma3.4. FixA 2 R? 9 We havev” Av  k Ak, foranyk-sparse unitvector 2 R%,
Lemma 3.5. For any vectorv 2 RY, vv>

_ 2
Fikk — kaZ:k‘

We now continue to present key technical lemmas for proving our main structural result (Theorem 3.1).
Lemma 3.6 gives the weighted empirical covariance for a convex combination of two weight vectors.

Lemma 3.6. Fix n samplesX1;:::; X, 2 RY. Letw; W 2 R" be two non-negative weight vectors
with kwk, = kiwk, = 1. Forany ; Owith + =1, lettingw= W+ W, we have
w= wt wt (w ww w
Proof. Becausewv = W+ W and , is linear inw, we have ,, = w+ . Thelemma
follows from the following calculations:
X X X
w=  WXiX7 oy oy = Wi XX wowt i X X7 W W
i i i
+ wwt wwe (wt w wt w
= wt wt (w ww w
The last stepuses 2= 2= as + =1. O
Letw” denote the uniform distribution o@, i.e.,w] = g if i 2 G andw; = 0 otherwise. By

Lemma 3.6 for anyv, if we move towardv’, we have
a ywrw?=(1 ) wt  wrt (1 )w w?)( w w?)

We will show that we can essentially ignore the last rank-one term using Lemma 3.7.

Lemma 3.7. LetG” be a(k; ; )-stable set of samples with respect to the ground-truth distribution
with 0 < . LetS be an -corrupted version o6?. Then, we have

(w w2 )( w w?)> Fikck 4 Kk IkF;k;k + O( 2:)
We are now ready to prove our main result (Theorem 3.1).

Proof of Theorem 3.1Fix any weight vectow 2 . . We will show that ifw is a bad solution,

thenf (w) decreases iiv moves towardv’, sow cannot be a stationary point.

Letc; be the constanti®( ) in Lemma 3.7. By Lemma 3.7, K K, ©C fora sufciently
c? 2 2 '

large constant, thenk v  Tkgy (7 a)—=( —).

ByLemma3.6, 1 jw+w> =1 ) w )+ Cw D Q@ Nw w)w w):

Using the triangle inequality fdk k..., , we have

@ wrw? | Fikek (1 )k w Ky
+ Kk w? IkF;k;k + (1 ) ( w w7)( w w?)> Fkek .

We know thak w2 I'Kg 2 by the stability condition in De nition 2.1. By Lemma 3.7 and
k w Ikeyy = ( 2=),wecanshowthatforal< < 1,

f ((1 )W tw ?) = (l )W+ w? I F;k:k

L )k w Ky * —+4 K w ke + O() @
(L +4 )k w IKeyy *(@ci+1)—
(1 i)k wo | kF;k;k =@ §)f (W) :



The laststepusds 4 )k v 1k, (4c+1) — whichholdsif 1=10andc} 164c; +40.

It follows immediately thatv cannot be a stationary point. Let= H andh = kw®  wk,.
2

We havew+ hu =(1  )w+ w?2 . because . isconvex. Sincéw’ wk, = O(p '=n),

f hu) f =2)f 2= = =2\ .
(w+ uh) (w) (=2)f (w) ( ) (n122 32)'

|I!m0 kw? 7wk,

S o
ur f(w)= Ir|]r!n0 WK o

By De nition 2.3, we knoww cannot be a -stationary point of forsome = O(n'™2 2 3%2), O

4 Robust Sparse PCA

We consider a spiked covariance model for sparse PCA. In this model, there is a dive2tRf

with at mostk nonzero entries. The good samples are drawn from a ground-truth distribution with
covariance = | + vv~,where > 0is a parameter that intuitively measures the strength of the
signal. We consider the more interesting case whenl (if is larger the problem becomes easier).

o solve the sparse PCA problem, we consider the following optimization problem, Where
Wi Xi X7 andkAKe. 5. = MaXjgj=z k2 KAQKe:

mvjn f(w)= kMy IKg o2 subjecttow2 p : (5)

The objective function minimizes the Frobenius norm of the lar8e$tentries of a reweighted
second-moment matrid ,,. Note thatf (w) is actually convex iw, because the matriM, is linear
inw and thek k.. 5, . norm is convex.

Let R be the support ofv” . Intuitively, thek? entries inR could be large due to spiked covariance.
By minimizing the norm of the largegk? entries, we hope to make the entries outsidR afery
small. Our algorithm is given in Algorithm 2.

Algorithm 2: Robust sparse PCA.

Input: kK> 0,0< < o, and an -corrupted set of sampléX;){L; drawn from a distribution
with covariancd + vv > for ak-sparse unit vector.
Output: a vectoru that is close tov.
1: Find a rst-order stationary point 2 . of the objectiveminy, f (W) = kMy,  TKg. 2.
2: LetA = M,, |.LetQ be thek? entries ofA with largest magnitude.
3: Returnu = the top eigenvector dfAq + Ag).

Theorem 4.1. Let0 < 1,0< < g,and > .LetG”? be a set oh samples thatigk; ; )-

stable (as in De nition 2.2) w.r.t. a centered distribution with covariatce vv > for an unknown
k-sparse unit vectov 2 RY. LetS = ( Xi){;sl be an -corrupted version oG”. Algorithm 2 outputs
avectoru suchthat uu>  w” _ = 0( =).

Theorem 1.3 is an immediate corollary of Theorem 4.1.

We can apply Theorem 4.1 to get an end-to-end result for subgaussian distributions. Algorithm 2
requires the stability conditions (De nition 2.2) of the original good sam@és We show that these
conditions are satis ed with a small number of samples.

Lemma 4.2. Let0 < land0O< < . LetD be a centered subgaussian distribution with
covariancel + vv > for a k-sparse unit vectov 2 RY. LetG? be a setoh = ( k?logd= ?)
samples drawn fror® . Then then with probability at leagt exp( ( k?logd)), G is(k; ; )-
stable (as in De nition 2.2) w.r.tD for = O( log(1=)).

Combining Theorem 4.1 and Lemma 4.2, given as input-eorrupted set oh = € k?logd= ?)
samples drawn from a centered subgausaian distribution with covatiancev > , Algorithm 2
returns a vecton with uu”  vw” _ = O(C log(1=)=).

We defer the proofs of Lemma 4.2 and Theorem 4.1 to Appendix B and give an overview of the proof
of Theorem 4.1.



Proof Sketch of Theorem 4.1. We can use the stability conditions to upper bound the optimal
objective value: note that for w* (uniform distribution on the remaining good samples), we must
have HMw* - I+ pva)HF2k2 < § by the stability conditions, therefore ||My» — I pope <
[ M — (I + pvo )| pope + |00 T || g2 < p+6. Because the objective function f(w) is convex,
any stationary point w must be globally optimal and satisfies f(w) < p + 4.

Fix a stationary point w and let A = M,, — I. Let R be the support of vv T and let @ be the set of k2
largest entries of A. The stability conditions implies for any w, the projection in the v direction must
be large (formally v " Av > p — §). Because the objective function measures the norm of the largest
2k? entries of A and it is not much larger than the norm of the largest k2 entries, we can argue that
Apg and A are close, so UTAQU > p—0(9).

Now A, is a matrix with Frobenius norm at most p + & while v Agv > p — O(4). Together these
imply that the norm of Ag in direction orthogonal to vv T is at most O(1/pd), and then by standard
matrix perturbation bounds we know the top eigenvector of (Ag + Ag) is O(1/d/p) close to v.

5 Experiments

We perform an experimental evaluation of our robust sparse mean estimation algorithm on synthetic
datasets with a focus on statistical accuracy (¢s-distance between the output and the true sparse mean).
We evaluate our algorithm (Sparse Gradient Descent, Sparse GD) on different noise models, and
compare it to the following previous algorithms:

* oracle, which is told exactly which samples are inliers, and outputs their empirical mean,

* the robust sparse mean estimation algorithm RME_sp from [DKK* 19b],

* NP (Naive Pruning), which removes samples far from the median and output the mean of the rest,
* RANSAC, which randomly selects half of the points and computes their mean. One solution is

preferred to another if it has more points in a ball of radius O(+/d) around it.

For algorithms that output non-sparse vectors, we take the largest k entries before measuring the ¢
distance to the true mean. We evaluate the algorithms on various noise models:

* Linear-hiding noise. The inliers are drawn from N (0, I). Let S be a size k set. Then, half the
outliers are drawn from N (1g, I) and the other half are drawn from N (0,21 — Ig).

* Tail-flipping noise. This noise model picks a k-sparse direction v and replaces the € fraction of
points farthest in the —v direction with points in the 4-v direction.

» Constant-bias noise. This model adds a constant to every coordinate of the outlier points. In
Figure 3, we add 2 to every coordinate of every outlier point.

We ran our experiments on a computer with a 1.6 GHz Intel Core i5 processor and 8 GB RAM. We
built on the codebase of [DKK*19b] # and implemented our new algorithm for the experiments. For
each pair of algorithm and noise model, we repeat the same experiment 10 times and plot the median
value of the measurements. We shade the interquartile region around the reported points in the figure
as confidence intervals.
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(a) Fix the sparsity k and change the number of samples n. (b) Fix n and change the sparsity k.

Figure 1: The performance of various algorithms under linear-hiding noise. Notably, when the
number of samples n or the sparsity & is small, our algorithm Sparse GD outperforms RME_sp.

4 Available at: https://github.com/sushrutk/robust_sparse_mean_estimation, MIT license






